Modeling Export Price of Tea in Kenya: Comparison of Artificial Neural Network and Seasonal Autoregressive Integrated Moving Average
نویسندگان
چکیده
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملFault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling
In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental...
متن کاملcomparison of auto regressive integrated moving average and artificial neural networks forecasting in mortality of breast cancer
b a c k g r o u n d & aim: one of the common used models in time series is auto regressive integrated moving average (arima) model. arima will do modeling only linearly. artificial neural networks (ann) are modern methods that be used for time series forecasting. these models can identify non-linear relationships among data. the breast cancer has the most mortality of cancers among...
متن کاملForecasting Inflation: Autoregressive Integrated Moving Average Model
This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Theoretical and Applied Statistics
سال: 2014
ISSN: 2326-8999
DOI: 10.11648/j.ajtas.20140306.16